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LETTER TO THE EDITOR 

Two-dimensional percolation: logarithmic corrections to 
the critical behaviour from series expansions 

Joan Adler and V Privman 
Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel 

Received 31 July 1981 

Abstract. We have analysed several extant series for the mean cluster size, the zeroth 
moment of the pair connectedness and the percolation probability for bond and site 
percolation on two-dimensional lattices with a view to detecting possible logarithmic 
corrections. The logarithmic correction exponent z is f0ur.d to be in the range 0- 6 z 6 
0.15, and our analysis also provides some new information about the critical exponents y 
and S.  

Following the suggestion of Andelman and Berker (1981) that the logarithmic factors 
that have been found for the q = 4 state Potts model (Potts 1952) may also be relevanr 
for the q + 1 limit of this model (i.e. the bond percolation problem), Stauffer (1981) 
conducted a search for them. He re-examined a Monte Carlo calculation (Eschbach et 
a1 1981) of the correlation length critical behaviour and found that the correction 
exponent z (defined in equation (3) below) would be 

z = 0.06 f 0.06 

not excluding the possibility z = 0. Stauffer (1981) further suggested that the dis- 
crepancy which may exist between a presumably exact value of y (the exponent of the 
mean cluster size S ( p ) )  and the y derived from some series results may be explainable 
by logarithmic corrections. 

This ‘exact’ value of y, and a corresponding estimate of p (the exponent of the 
percolation probability P ( p ) )  can be obtained from the conjectures of den Nijs (1979) 
that YT (bond percolation)=3/4, and of Nienhuis et a1 (1980) that yH (bond 
percolation) = 91/48. Using scaling relations (Nightingale and Blote 1980), one 
obtains 

p =(d-Y~)/YT=5/36=0.13888..  . (i) 

y = ( 2 y ~ - d ) / y ~ = 4 3 / 1 8 = 2 . 3 8 8 8 . .  . . ( 2 )  

and 

The published estimates for y from series expansions are by no means unanimous. 
The range of values y 3 2.40, quoted by Stauffer (1981), includes the estimates of Sykes 
et a1 (1976a) (derived from the low-density expansions of Sykes and Glen (1976)) for 
the bond series on the honeycomb (HC), square (Sa) and triangular (T) lattices, but not 
any of their site estimates which are lower. The (low-density, bond series) estimate of 
Dunn et a1 (1975) for the zeroth moment of the pair connectedness po (whose critic21 
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behaviour is also governed by y )  is 

y = 2.38 * 0.02 

and the estimate of Domb and Pearce (1976) (from analysis of several bond and site, 
low- and high-density series) is 

y 5 2.38 * 0.02 

both compatible with equation (2). In the light of the reservations expressed by Sykes et 
a1 (1976a) concerning their subjective error estimates, these differences are not 
surprising, but the hypothesis of logarithmic corrections seems worthy of investigation. 

For the exponent p Blease et a1 (1978) obtain 

p =0.139*0.003 

from several high-density series for the T-bond problem, which is consistent with Sykes 
et a1 (1976b) who found that 

p =0.138*0.007 

from series on several different lattices. These results both agree with equation (1); 
however the large relative errors in the p values are potentially problematical. 

In this work we report on our search for logarithmic corrections in several S ( p ) ,  
p o ( p ) ,  P(q) ,  P (q )  series, where q = 1 - p ,  and P ( p )  is the probability that a given site (if 
present) belongs to an infinite cluster, whereas P ( p )  is the probability that a given bond 
(when present) belongs to an infinite cluster (Blease et a1 1978). To achieve this 
objective we assume a behaviour for S ( p ) ,  p o ( p ) ,  P ( p )  and P ( p )  of the form (for x <xc) 

f(x) = c ( X ) ( X c - x ) h  log zh  (xc-x) (3) 

where h denotes the critical exponent (-7 or p )  and x denotes p or q. Using a finite 
number of terms of the power series of f(x) (in powers of x), we derive the power series 
for 

(4) 

and when c ( x )  is finite at xc it follows immediately that 

lim g ( x ) = z .  ( 5 )  
X’XC 

We note that equation (5) holds not only in the case where c(x) is analytic at xc, but also 
when confluent corrections are present. For example when 

c(x)-cl[ l+cz(xc-x)A+.  . .I, (6) 

where A > 0, is the exponent of a possible confluent correction. Such confluent terms 
were recently shown to exist in the S ( p ) ,  p n ( p )  and P ( p )  series for directed bond 
percolation (Adler et a1 1981). Evidence for their presence in isotropic percolation at 
d = 2 and d = 3 may be deduced from &-expansion results and their Padt-Bore1 
resummation (Aharony 1980, Houghton et a1 1978) and they may be an alternative 
explanation for any discrepancy that exists between the series estimates for critical 
exponents and the conjectured ‘exact’ values. They have also been observed in the 
series for the generating function for the total number of clusters with s sites (Gaunt etal 
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1976) and in the series for Pc(A), the percolation analogue of the magnetic field 
variation of the magnetisation along the critical isotherm (Gaunt and Sykes 1976). 

In the presence of confluent corrections equations (4) and (6) give 

cZA (x, - x)' log (x, - X) 
. g = z + -  f . ,  

h 1+c2(xc-x)' 

but since A > 0 equation ( 5 )  still holds. 
Evaluation of g(x + x,) is carried Gut by forming Pad6 approximants to g(x). The 

required input is the values of x, and h, and in our preliminary studies we found that the 
value of z is rather sensitive to the input x, .  Therefore, we restrict ourselves to the 
problems where p c  is known exactly, namely the SQ lattice bond ( p ,  = i), the T lattice 
site ( p ,  = i) and bond ( p ,  = 1 - 2 sin ( ~ / 1 8 ) ) ,  and the HC lattice bond ( p ,  = 2 sin ( ~ / 1 8 ) )  
percolation problems, When the leading exponent h is varied, each Pad6 approximant 
[ N , K ]  (where N and K are the powers of the numerator and the denominator 
respectively) defines a curve z ( h ) .  

For all four cases mentioned above we have studied the low-density series for the 
mean cluster size ( S ( p ) ,  x = p ,  h = - y )  taken from Sykes and Glen (1976). For the T 
lattice bond problem, we have also investigated the series for the zeroth moment of the 
pair connectedness ( k o ( p ) ,  x = p ,  h = - y ) ,  of Dunn et a1 (1975). 

In figures 1, 2 and 3 we summarise the z ( y )  curves that were obtained from the 
central (largest N + K  and closest to diagonal) Pad6 approximants for the SQ-bond 
S ( p ) ,  T-site S ( p )  and T-bond w o ( p )  series respectively. We find that in each case there 
is a central 'grouping' of the majority of Pad6 approximants. This central group of z ( y )  
functions possesses surprising similarity when we compare the S ( p )  bond and site 
results, and the S (  p )  and wo( p )  results-an astonishing manifestation of universality, 

0.16 c 

- 0  16 I 
2 36 2.40 2 44 

x 

Figure 1. Plot of the Pad6 approximants to the logarithmic correction factor z as a function 
of y for the S ( p )  series for the bond percolation problem on the square lattice. Curve A 
indicates the [5,8] approximant, B indicates the central group of [6,7], [7,6], [S, 71, [6,6], 
[7,5], [S, 61 and [6, 51 approximants and C indicates the [8,5] approximant. 
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Figure 2. Plot of the Pad6 approximants to the logarithmic correction factor z as a function 
of y for the S ( p )  series for the site percolation problem on the triangular lattice. The curves 
A and B indicate the [6, 81 and [5, 91 approximants respectively, C indicates the central 
group of [7,7], [S, 61, [9,5], [7,6] and [8, 51 approximants, and D and E indicate the [ 5 , 8 ]  
and [6, 71 approximants respectively. 
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Figure 3. Plot of the Pad6 approximants to the logarithmic correction factor z as a function 
of y for the po( p )  series for the bond percolation problem on the triangular lattice. Curve A 
indicates the [4,5] approximant (which exhibited a weak pole at y - 2.352 which is not 
reproduced in the figure), and curves B indicate a central group of [5,41,[6,3], [4,4], [5,3] 
and [4,3] approximants. Curve C indicates the [3,5] approximant, and D and E indicate the 
[3, 61 and [3,4] approximants respectively. 
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Judging from the spread within this central group we are able to determine a range of z 
values to correspond to the different choices of y discussed above. We have 

~ = 2 . 3 8 * 0 . 0 2 + - 0 . 0 4 C ~  CO.03 

y = 2.40* 0.03 + -0.02 S 2 S 0.08 

and 

y = 2.43 * 0.03 + 0.02 c z s 0.15 

and note for purposes of comparison that for these three series the ‘direct’ estimates 
(using Dlog Pad6 and extrapolation methods) were found to be y = 2.425 f 0.065, 
y = 2.40 * 0.03 and y = 2.38 f 0.02 (Sykes eta1 1976a, Dunn et a1 1975) respectively. If 
we accept the conjectured ‘exact’ value of y (equation (2), y = 43/18) we find that the z 
values vary in the ranges 0.012 c z c 0.013, 0.011 s z S 0.014 and 0.000 c z s 0.005 
respectively for these three series. Finally, we examined the y values for which z ( y )  = 0 
for the different central curves. For all three series these estimates fell in the range 

2.380 S y S 2.389. 

It must be stressed that the ranges of y and z values which we present here should 
not be considered as absolute error bounds, but rather as the ranges of spread of the 
different Pad6 approximant values. Not only do we not possess a more reliable method 
of error estimates for this type of analysis, but we are unable to exclude the danger of 
systematic errors. Particularly, since we are evaluating Pad6 approximants to the 
function g ( x )  (equation (4)) which has logarithmic terms, we cannot expect the pro- 
cedure to be convergent in general. For example, in the case of the T-bond S ( p )  series 
(for which the z ( y )  curves are summarised in figure 4) we found a spread over a larger 
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Figure 4. Plot of the Pad6 approximants to the logarithmic correction factor z as a function 
of y for the S ( p )  series for the bond percolation problem on the triangular lattice. Curves 
A-G indicate the [3,5], [3,6], [4,5], [6,3], [4,4], [5,3] and [4,3] approximants 
respectively. (The [S, 41 and [3,4] approximants extended above the scale and are not 
plotted.) 



L468 Letter to the Editor 

range of z values, and no central ‘grouping’. Because of this wider spread, the only 
useful information we may obtain from figure 4 is that the z values are consistent with 
the preceding analysis. 

Our results for the HC-bond S ( p )  series resemble the T-lattice bond case (wide 
spread of z ( y )  curves and no ‘central’ grouping); again there is no inconsistency with the 
preceding estimates, and thus we do not present a graph. 

Having noted that the convergent estimates are extremely consistent and the less 
convergent z ( y )  curves in no way contradict their behaviour, we may intimate from our 
above analysis that z is zero or close thereto for input y values near the conjectured 
‘exact’ value. In turn, the y values obtained with the assumption z = 0 are consistent 
with most of the ‘direct’ estimates. There remains, however, the range of values, 
y - 2.42, quoted by Sykes et a1 (1976a) which are not consistent with the above picture, 
and imply z > 0. For both regions we may estimate that 0 < z < 0.15, a range of values 
similar to the range 0 s  z ~ 0 . 1 2  obtained by Stauffer (1981) for the correlation length. 

We now turn to the percolation probabilities P ( p )  and & p ) ,  which are expected to 
have the same critical behaviour, with an exponent p. The available series in this case 
are high-density ( x  = q )  series for P ( q )  for all four lattice and site/bond permutations 
considered above and &q) for the T-bond problem (Sykes et a1 1976b, Blease et a1 
1978). 

The results for the T-bond &q) series are plotted in figure 5 .  We find a clear central 
‘grouping’ of z(p)  curves, and for the relevant p values we obtain 

p = 0 . 1 3 9 * 0 . 0 0 7 + - 0 . 2 S ~  C0.3 

p = 0 . 1 3 8 * 0 . 0 0 3 ~ - 0 . 0 5 S ~  S0.15  

and 
p =I- 36 - 0.1388 . . .+O.O9 < Z < 0.13. 

The range of p values for which the ‘central’ z ( p )  curves vanish is 

z = 0+0.1345 sB s0 .1365.  

P 
Figure 5,. Plot of Pade approximant estimates of the correction factor z as a function of p 
for the P(q)  series for the bond percolation problem on the triangular lattice. Curves A-E 
indicate the [15, 141, [14,15], [17, 131, [15,15] and [16, 131 approximantsrespectively, and 
curves F indicate the group of [13,17], [14,16], [16, 141 and [13,16] approximants. 
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If we consider the narrower range of p ,  namely p = 0.138 f 0.003 (Blease et a1 1978), 
the corresponding range of z values is observed to be similar to the S ( p )  and p o ( p )  
cases, and to the values of Stauffer (1981). However, in the P ( q )  case the conjectured 
‘exact’ value of p = 5 / 3 6  is inconsistent with z = 0. 

The results for the P(4) series for T, SQ, HC-bond and T-site problems are less 
conclusive. We found a considerable spread of z ( p )  curves in these cases. A typical 
situation is that of the T-bond P(q)  series, plotted in figure 6 .  Here the z ( p )  values are 
consistent with the results for the P(q)  series, although the uncertainties are much larger 
in the P(q)  case, and it must be stressed, that again p = 5 / 3 6  and z = 0 are inconsistent. 
For all four P(q) series we find that 

p = 5/36 + 0.1 c z  < 0.5 

and thus z ( 5 / 3 6 )  is clearly positive. 

suggest that 
In summary, we have found that both the high-density and the low-density series 

0 - s z c O . 1 5  

which is consistent with the Monte Carlo results of Stauffer (1981) and we found that 
the assumption that z = 0 would exclude some y estimates as well as the conjzctured p 
value. 

I ’  I 1 I 1 I I  
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Figure 6. Plot of Pad6 approximant estimates of the correction factor z as a function of p for 
the P(q)  series for the bond percolation problem on the triangular lattice. Curves A indicate 
the[l3, 17]and[13,16]approximants,andcurvesB andcindicate the[l4,  15]and[16, 131 
approximants respectively. Curves D and E indicate the [15,15] and [16, 141 and the 
[17,13] and [15, 141 approximants respectively, and curve F indicates the [14,16] approxi- 
mant. 

We thank A Aharony for drawing our attention to the possibility of logarithmic 
corrections at d = 2, N Berker for forwarding his preprint, and M Moshe for valuable 
discussions. One of us, (JA), acknowledges the support of the Lady Davis Fellowship 
Foundation. 
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